翻訳と辞書
Words near each other
・ Willard Crocker
・ Willacoochee, Georgia
・ Willacy County, Texas
・ Willacy Detention Center
・ Willadingen
・ Willaertia
・ Willagee state by-election, 2009
・ Willagee, Western Australia
・ Willailla, Kentucky
・ Willakenzie Grange Hall
・ Willakuy
・ Willam Belli
・ Willam Christensen
・ Willam M. Feehan (fireboat)
・ Willam Radcliff House
Willam-Warnke yield criterion
・ Willamalane Park and Recreation District
・ Willamar, Texas
・ Willamette
・ Willamette Ballet Academy
・ Willamette Bearcats
・ Willamette Bridge
・ Willamette Cattle Company
・ Willamette Chief
・ Willamette Collegian
・ Willamette Falls
・ Willamette Falls Community Hospital Heliport
・ Willamette Falls Locks
・ Willamette fleabane
・ Willamette Floodplain


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Willam-Warnke yield criterion : ウィキペディア英語版
Willam-Warnke yield criterion

The Willam-Warnke yield criterion 〔Willam, K. J. and Warnke, E. P. (1975). ''Constitutive models for the triaxial behavior of concrete.'' Proceedings of the International Assoc. for Bridge and Structural Engineering , vol 19, pp. 1- 30.〕 is a function that is used to predict when failure will occur in concrete and other cohesive-frictional materials such as rock, soil, and ceramics. This yield criterion has the functional form
:
f(I_1, J_2, J_3) = 0 \,

where I_1 is the first invariant of the Cauchy stress tensor, and J_2, J_3 are the second and third invariants of the deviatoric part of the Cauchy stress tensor. There are three material parameters (\sigma_c - the uniaxial compressive strength, \sigma_t - the uniaxial tensile strength, \sigma_b - the equibiaxial compressive strength) that have to be determined before the Willam-Warnke yield criterion may be applied to predict failure.
In terms of I_1, J_2, J_3, the Willam-Warnke yield criterion can be expressed as
:
f := \sqrt + \lambda(J_2,J_3)~(\tfrac - B) = 0

where \lambda is a function that depends on J_2,J_3 and the three material parameters and B depends only on the material parameters. The function \lambda can be interpreted as the friction angle which depends on the Lode angle (\theta). The quantity B is interpreted as a cohesion pressure. The Willam-Warnke yield criterion may therefore be viewed as a combination of the Mohr-Coulomb and the Drucker-Prager yield criteria.
== Willam-Warnke yield function ==

In the original paper, the three-parameter Willam-Warnke yield function was expressed as
:
f := \cfrac~\cfrac + \sqrt}~\cfrac\cfrac - 1 \le 0

where I_1 is the first invariant of the stress tensor, J_2 is the second invariant of the deviatoric part of the stress tensor, \sigma_c is the yield stress in uniaxial compression, and \theta is the Lode angle given by
:
\theta = \tfrac\cos^\left(\cfrac~\cfrac

where
:
\begin
u(\theta) := & 2~r_c~(r_c^2-r_t^2)~\cos\theta \\
v(\theta) := & r_c~(2~r_t - r_c)\sqrt \\
w(\theta) := & 4(r_c^2 - r_t^2)\cos^2\theta + (r_c-2~r_t)^2
\end

The quantities r_t and r_c describe the position vectors at the locations \theta=0^\circ, 60^\circ and can be expressed in terms of \sigma_c, \sigma_b, \sigma_t as
:
r_c := \sqrt}\left()

The parameter z in the model is given by
:
z := \cfrac ~.

The Haigh-Westergaard representation of the Willam-Warnke yield condition can be
written as
:
f(\xi, \rho, \theta) = 0 \, \quad \equiv \quad
f := \bar(\theta)~\rho + \bar~\xi - \sigma_c \le 0

where
:
\bar := \cfrac ~;~~ \bar := \cfrac ~.



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Willam-Warnke yield criterion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.